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This article presents an analysis and modification of the new Blizard decoding
algorithm, which promises to give performance superior to any known practical
decoding algorithm on the deep space channel.

l. Introduction

In Ref. 1, R. B. Blizard describes a new method for
decoding binary linear error correcting codes. The algo-
rithm was presented ad hoc and the description was
sketchy. In an attempt to understand his process, I have
developed a modification which has a partly logical, partly
heuristic derivation as an approximation to the maximum
likelihood estimator. The computational complexity of
these algorithms is within the range of practicability,
while for most codes it is impractical to implement the
maximum likelihood estimate.

The mathematical foundation, given here, reveals the
assumptions needed to derive the algorithms. It is, how-
ever, necessary that an investigation be carried out to
determine the suitability of these algorithms for specific
codes and channels.

Il. Preliminaries

Let m,, - - - ,m; be random variables which take on
the values 0 and 1. Let G be a k by n matrix of 0’s and s
and define

k
Tj = E miG;j mod 2,

i=1

i=L2 - .n
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The m;’s are message bits, the T,’s are transmitted bits,
and G is the generating matrix of the code. Finally, let
p(Z]0) and p(Z|1) be two probability densities and
Z,, - -+ ,Z, be random variables whose joint density,
given my, - - - ,my, is

P(Zlg t ’Z'nlmly Tt :mk) - H p(Z]IT.?) (1)
i=1

The Z;s are the received symbols of a memoryless
channel.

The decoding problem is to determine functions
m;(Z,, - -+ - ,Z,) which satisfy some performance cri-
terion. If all messages are equally likely and minimum
probability of word error is desired, then the estimator is

the maximum likelihood estimator, (m?, - - - , m}) which
satisfies
P(Z, - Z,m} - - - omf) =

_ max P(Z1, cott ,anml, ce 3mk) (2)

In practice this estimator is not easily computed (with the
exception of Viterbi’s dynamic programming algorithm
for convolutional codes with small memory) so that ap-
proximations are required to minimize equipment.
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lil. Derivation of the Algorithm using the Z;’s. The goal is to achieve the maximum likeli-
hood estimator.
The algorithm begins with tentative probabilities as-
signed to the m;’s and attempts to repetitively improve
these estimates by using the estimates as a priori prob- Let {P,:0=(6:, * - -, 6x), |8:|=1} be a parametric
abilities and replacing them by a posteriori probabilities ~ family of probability functions defined as follows:

n k
14+ (—1)mg;
Po(zl,---,z.,,ml,---,mk>=HP<zj|Tf)H( = )
§=1 i

=1

3)

where T; is defined as before. There are other methods for parameterizing this family but the 6’s are convenient since
E,[(—1)™] =46,

Observe that
PO(Z1,"',Zn)= > P(Zh"',znlmh'",mk)Po(ml,"',mk)
= 2 P(Zh".,zﬂlm*’.'.5m;:)P9(m19."smk)
= P(Zl, e ,Z”Im’:’ .« . ’mz)
= Py (Zl, T azn) (4)
where (m}, - - - ,m}) is defined by Eq. (2) and 0= (—1)™i. Therefore, §* is a solution to the problem of finding that 4
which maximizes P, (Z,, - - - ,Z,). Conversely, if the maximum likelihood estimate is unique, the solution to the para-

metric maximization problem is unique and is at 6% = (—1)m,

From the probability model defined by 6, the a posteriori probabilities P, (m;|Z,, - - - ,Z,) and the a posteriori
expectations

0: (0,Z1, et ,Z”)=Ee [(—1)’"‘|Z1, e ,Z”] (5)

can be computed. The substitution of 8’ for ¢ induces a transformation, o (f) defined by Eq. (5) on the parameter
space. This transformation has been studied (Refs. 2 and 3) and is known that

Po(e)(zl, e ,Z”)éPa(Zl’ c. ,Z”)

with equality only if § = ¢ (). Further, § = ¢ () only at stationary points of P, (Z, - - - ,Z,) (regarded as a func-
tion of only ). This fact suggests the following procedure: select some 6° and define recursively 8! = ¢ (9*-1) for
t=1,2, - - - . The function values Po:(Z,, - - - ,Z,) increase and for almost all choices of §° (i.e., except for a set of
Lebesque measure 0), the sequence will converge to a local maximum (Ref. 3). Hopefully, if ¢° is in a neutral position,
the maximum point will have enough influence on the trajectory to be the point of convergence.

Next, consider the formula for o (¢). Algebraic manipulation of Egs. (3) and (5) results in the equation

1+6:  Po(Zy, - ,Zym;=0) 1+ 6
1—0’,-_Pg(Zl,---,Z,,lmi—_-l)l_g‘. (6)

where

Py(Z,, - - ,Zy|my=a)= Z ]f[ P(Z;|m, - - - ,mk)]:[(l "'(;1)'"'01) @)

My, + e ymE=0,1 J=1 1#i
mi=a
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This formula is of little practical value since the work required to evaluate it grows exponentially with k. However, if
we assume that P, (Z,, - -+ , Z,|m; = a) is well approximated by

ﬁPe(Z,-|mi=a)

=1

(that is, the Z’s are conditionally independent given m;), then the work is significantly reduced and Eq. (6) becomes

146, 1+6.TTP:(Z)]|m =0) (8)
T 6~ 1= 0 PG| = 1)

The jth factor can be written in terms of channel probabilities as

-

Po(Z;|mi=0)  p(Z;]0)Po(T; =0|m; =0) + p(Z;|1) Po(T; = 1|m; = 0)

- 9
Po(Z|mi=1) ~ p(Z,|0)Pu(T; =0|m: = 1) + p(Z;|1) Po (T, = L|m; = 1) ©)
Now
k
T; =TT gym;
=1
so that

E.[(— 1) |m; = 0] = E, [H(—l)»w ‘ m; = o] - I (10)

? [£=23

where the products are over all { for which g,; = 1. Labelling the last product in Eq. (10), 8;;, reduces Eq. (9) to

Po(Zijlmi=0) _ p(Zi]0) (A + Bsj) + p(Z;|1) (1 — Bij)

= 11
Po(Zim=1)  pZ 01— Bi) + p G DL+ o) (an

provided g;; = 1. If g;; = 0, the ratio is 1. Equation (8) can now be written
1+6: _ 1+6:TTPr(Z]0) (1 + Bi) + p(Z;|1) (A — Bis) (12)

1—-6;"

where the product is over all j with g;; = 1.

With the exception of the factor (14 6;)/(1 — 6;),
Eq. (12) is equivalent to Blizard’s transformation. This
additional factor has a conservative effect. If the prob-
ability of m; =0 is close to one and the product in
Eq. (12) is less than one, then the transformation with the
(L+6:)/(1— 6;) factor lessens the probability a small
amount. While the transformation without the factor
switches the probability to less than one-half.

Blizard’s initial probabilities can be obtained in a
natural manner from Eq. (12) as follows. If all messages
are assumed equally probable, the initial parameter
6°=(0, - - - ,0). In this case B;; = 0 unless the product
defining B;; is empty, in which case 8;; = 1. This corre-
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1= 0:+1p(Z;]0) (1 — Bij) + p(Z;|1) (1 + Bij)

sponds to Tj = m;. If there is only one value of § for which

this is true, Eq. {12) reduces to
1+6: _ p(Z]0)
1-60  p(Z;]])

(13)
which corresponds to Blizard’s initial probabilities.

The suitability of these algorithms depends upon two
things. First, the assumption
P,(Z,, -+ ,Zy|m; =a) = T] Pa(Z;|m; = a)
i

should not do too much violence to the probability model.
And secondly, the product factor in Eq. (12) should have
a distribution which is not clustered too near 1.
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